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Abstract—Single-robot visual SLAM has problems such as slow
mapping speed. This study proposed a multi-robot collaborative
SLAM and scene reconstruction system based on an RGB-
D camera. The system adopts a centralized structure. While
several client robots collect RGB-D image data respectively and
transmit the data to the server, the server runs a stand-alone
visual SLAM system based on ORB-SLAM2 for each client,
and stores the real-time mapping data in the map manager.
At the same time, it detects whether the maps in the map
managers meet the fusion conditions at a certain frame rate,
and uses the map fusion algorithm to fuse when the conditions
are met. In order to solve the problem that ORB-SLAM2 can
only do semi-dense mapping, the system uses the 7-DoF poses
of each client output by collaborative SLAM to reconstruct
the dense map. We evaluated the performance of the system
through simulations. Compared with the single-robot system, the
collaborative SLAM in this system has a significant improvement
in speed and can maintain high accuracy. We verified the
effectiveness of the scene reconstruction algorithm through the
scene reconstruction simulation and further proved that high-
precision camera poses can be obtained in collaborative SLAM
through the reconstruction results.

Index Terms—RGB-D camera, collaborative SLAM, scene
reconstruction, multi-robot

I. INTRODUCTION

Due to the rich information, low price, simple configuration,
and other characteristics of visual sensors, visual SLAM has
increasingly drawn the attention and many mature visual
SLAM frameworks have been proposed. A classic visual
SLAM framework consists of five modules, which are visual
sensor, visual odometry, back-end optimization, loop closure
detection, and mapping [1]. One drawback of this framework is
that in some scenes with long trace and deficient loop closure,
the accumulated error is difficult to be eliminated, so it will
greatly reduce the accuracy of mapping. It is an effective idea
to divide the SLAM task into several parts and complete it by
multi clients.

A single visual SLAM platform is difficult to meet the needs
of scene data collection and mapping in many application
scenarios, while the multi-robot system has more advantages in
task efficiency, fault tolerance, reconfigurability, and hardware
cost. The collaborative visual SLAM can not only shorten the
time of mapping but also improve the mapping accuracy.

This study proposed a multi-robot collaborative SLAM and
scene reconstruction system based on an RGB-D camera. The

system collects RGB images and depth images through an
RGB-D camera in the client and transmits the image data
to the server directly. The data transmission between client
and server is based on ROS (Robot Operating System). The
server creates a visual SLAM sub-system for each client based
on ORB-SLAM2 and transmits the image data package to
the corresponding sub-system according to the client ID in
the package for visual SLAM. At the same time, the server
creates a map manager for each client which manages the
map data of the client and checks whether the map meets the
fusion conditions through additional threads. The maps that
meet the conditions are fused and the fusion map is returned
to the corresponding map managers respectively. At the end
of collaborative SLAM, the server outputs each client’s 7-
DoF camera poses and integrates the clients’ camera poses for
dense scene reconstruction. We carried out the simulations of
collaborative SLAM and scene reconstruction using the well-
known TUM dataset.

The rest of the paper is organized as follows: Section II
presents related works. In section III, we introduce the system
topology structure, data processing flow, and communication
mode and discuss the client SLAM framework, then we
introduce the map fusion algorithm and scene reconstruc-
tion algorithm respectively. Section IV shows the simulations
of collaborative SLAM and scene reconstruction using the
sequences of the TUM dataset, the simulation results are
evaluated. Finally, we draw a conclusion in Section V.

II. RELATED WORKS

The Related works are introduced from the multi-robot
collaborative SLAM and scene reconstruction.

A. Multi-robot Collaborative SLAM

A few works have achieved collaborative SLAM using
ground robots or UAVs, most of which are server-client
architectures. [2] proposed a collaborative SLAM system for
UAVs based on a monocular camera. Each UAV independently
runs the visual odometry, carries out image feature extraction
and initial pose estimation of image frames, and transmits the
feature and the poses to the ground station. The ground station
first optimizes the poses and selects the keyframes, then detects
the overlap and loop closure through an independent scene



recognition module, and further optimizes the poses by local
BA (bundle adjustment) at the same time as detection. Finally,
map fusion and loop correction are carried out. Although the
visual odometry and scene recognition are modularized in this
system, only the initial optimized pose is used in the scene
recognition module, which leads to low accuracy of fusion
and loop calibration in more complex scenes, and it is easy to
occur the map drift. [3] proposed a multi-robot collaborative
SLAM framework based on a pose graph, which can use the
existing single-robot SLAM algorithm as its client’s SLAM
system. [4] proposed a centralized multi-robot collaborative
SLAM system based on ORB-SLAM2. The system uses an
efficient data transmission method. After the image features
are extracted, the client encodes them and transmitted to the
server, which greatly reduces the bandwidth utilization and
improves the real-time performance of SLAM. However, the
system only supports the stereo vision.

B. Collaborative Scene Reconstruction

Collaborative scene reconstruction pays more attention to
the use of lightweight clients for data acquisition and requires
reasonable task allocation to achieve the best utilization of
clients. [5] put forward a concept of collaborative scene recon-
struction combining multi-robot collaborative visual SLAM
and SFM (Structure From Motion). Deploying SLAM client on
mobile phones, Google glasses, and other devices to perform
collaborative SLAM, and using a remote server to collect data
for scene reconstruction, so as to reconstruct the scene quickly,
which is of great significance in AR, 3D navigation and other
fields. The method of collaborative scene reconstruction using
a mobile camera for image acquisition and 3D dense point
cloud splicing in the cloud server has been proposed in [6], [7],
and [8]. [9] proposed a task assignment method based on OMT
(Optima Mass Transport) which can plan the path dynamically
for each robot, so that the robot can perform efficient scene
reconstruction with the minimum overlap rate.

The accuracy of collaborative scene reconstruction depends
on the accuracy of pose estimation. At present, the mature
visual SLAM framework uses graph optimization, loop de-
tection, and other methods to improve the accuracy of pose
estimation. Therefore, using pose obtained through SLAM
for scene reconstruction is an effective method to improve
the accuracy of scene reconstruction. [10] proposed a scene
reconstruction method for UAV based on visual SLAM. This
method effectively improves the accuracy of pose estimation
and the quality of scene reconstruction.

III. SYSTEM OVERVIEW

Figure 1 shows the topology structure of the system. Figure
2 shows the flow chart of the system. The server needs to
specify the number of clients when initializing and create
a sub-system based on ORB-SLAM2 for each client. The
RGB-D image sequence is first processed by tracking thread
and local mapping thread, and then the system transmits the
generated keyframes to loop closure detection thread and
map fusion thread respectively. The server performs global

BA optimization after loop correction or map fusion. After
collaborative SLAM, the system output the camera poses of
all clients for scene reconstruction.

Fig. 1. System topology structure.

Fig. 2. Communication mode.

The system uses the topic-message mode of ROS for
server-client communication, as shown in Figure 3, and the
communication network is based on the TCP/IP protocol.

After collecting image data, the client encapsulates the data
with the ROS message and then publishes the message to the
topic. The server first initializes the map manager for each
client, then establishes a message receiver for each client and
subscribes messages from corresponding topics. Every time
the receiver receives a message packet, it calls a callback
function. In the callback function, the server extracts the RGB
and depth image data, timestamps, and client ID from the
message, and starts the tracking thread. Table I shows the types
and meanings of communication messages between server and
client.

TABLE I
MESSAGE FORMAT OF COMMUNICATION

BETWEEN SERVER AND CLIENT

Message type Meaning
Sensor msgs/Image rgb RGB image data

Sensor msgs/Image depth Depth image data
int16 clientId Client ID

float64 timestamps Timestamp of image data

A. Client SLAM Framework

The client SLAM framework is based on ORB-SLAM2
[11]. For each client, the sub-system runs three threads for
visual SLAM, which are tracking, local mapping, and loop
closure detection. The three threads implement parallel pro-
cessing through the mechanism of the mutex lock. Based on
the RGB-D sensor, the three threads are introduced as follows:

The tracking thread first preprocesses the RGB image
and depth image input to the system. The RGB image is
transformed into a gray image, and the image frame is
constructed by the gray image and the depth image. In the
construction of the image frame, the thread first extracts the



Fig. 3. System flow chart.

ORB features, then solves the camera pose and carries out
local tracking. After the pose solution is completed, the thread
selects keyframes from the frames and transmits them to the
local mapping thread.

The local mapping thread maintains a covisible relationship
between keyframes through map points which exists in the
keyframes that can observe the same map points, and it
optimizes the poses and the associated map points of the
covisible keyframes using local BA. Specifically, the thread
first places the keyframes received from the tracking thread in
the queue, then calculates the BoW vector for each keyframe,
after that, it adds constraints to the associated map points of the
current keyframe, and finally adds the current keyframe to the
existing covisibility graph. The added map points need to be
filtered, and the map points that do not meet the conditions will
be deleted. Then the thread uses the covisibility relationship
between the current keyframe and its covisible keyframes to
generate new map points by triangulation and adds them to
the map. After that, the thread takes the current keyframe and
its covisible keyframes, as well as the observed map points as
the overall optimization target and uses the g2o library [12] to
carry out local BA. Finally, redundant keyframes are removed
from the covisibility graph.

The loop closure detection thread receives the keyframes
from the local mapping thread. First, the thread performs
loop closure detection, obtains the candidate loop correcting
keyframes, then calculates the sim3 poses of all the candidate
keyframes and selects the best keyframes for correction. Fi-
nally, it runs a global BA thread to optimize the global pose
graph.

B. Map Fusion Algorithm

The map fusion thread of the server runs after the local
mapping thread. The algorithm flow is divided into three parts:
overlap detection, relative sim3 pose transformation, and map
fusion, as shown in Figure 4.

Next, we will introduce the algorithm for each step.
1) Overlap Detection: The thread first obtains the client

ID of the current keyframe and its covisible keyframes, then
it locks the current keyframe to prevent other threads from

Fig. 4. Fusion algorithm flow.

deleting the keyframe. After that, the thread uses the word-
bag technique to calculate the BoW score of the current
keyframe and its covisible keyframes, and uses the lowest
score as the threshold value to select the candidate matching
keyframe when detecting overlap. Then, according to the
threshold, the thread selects the candidate keyframes from the
keyframe database of other clients. In order to reduce the
mismatching rate of detection, it is necessary to detect the
continuity of candidate keyframes. The method is to judge
whether there is intersection among the sets that consist of
candidate keyframe and its covisible keyframes. If there is
intersection between current set and the former set, we say
that this two candidate keyframes are continuous. The last
keyframe of three continuous keyframes is selected and added
to the final candidate keyframe queue.

2) Relative Sim3 Pose Transformation Computation: The
thread calculates the sim3 pose of the candidate keyframes in
this step. First, the thread matches each candidate keyframe
with the target keyframe using the word-bag technique. If
the map points matching the candidate keyframe and the
target keyframe meet the requirements, the thread initializes
the sim3 pose solver according to the map points, otherwise,
it removes the candidate keyframe. Then, the thread uses
RANSAC to solve the sim3 pose transformation matrix. If
the sim3 pose transformation matrix is not found after the
maximum number of iterations, it removes the keyframes. For
the candidate keyframes solving the sim3 pose transformation
matrix, more matching map points are searched again and the
pose is optimized by map points. Finally, the thread takes
out all the covisible frames and their map points of the
candidate keyframes for the sim3 pose transformation matrix
and projects with the target keyframes for matching. If the
matching conditions are met, the final confirmation can be
made for map fusion.



3) Map Fusion: In the map fusion step, the thread first
obtains the client ID of the keyframes to be fused and extracts
the map data from the corresponding client map managers.
Then it uses the propagation method to calibrate the poses
of all keyframes in the map managers and recalculates the
coordinates of map points associated with keyframes. After
that, it connects the common views of both sides according
to the covisible relationship, and fuses the map points. After
fusion, the system uses a global BA thread to optimize the
whole poses of the graph. At this time, the two maps have
been fused, and the map managers of both sides are updated
with the fused map data.

C. Scene Reconstruction Algorithm

After the collaborative vision SLAM is completed, the
system outputs each client’s 7-DoF poses in the SLAM process
to files respectively. Each line is the pose of a certain image
frame. Its format is shown as

[ID of Frame] x y z qx qy qz qw

Where [ID of frame] is the timestamp of each frame, (x y
z) and (qx qy qz qw) are the 3-D coordinates and quaternion
digital positions of the camera in the current pose.

Because the poses used for scene reconstruction can be
disordered, the system integrates the client poses, then converts
the corresponding RGB and depth images into dense points
according to the timestamp of the pose in each line and splices
the point cloud. In order to avoid excessively massive points in
the point cloud, the system uses voxel filter to filter the point
cloud, and finally outputs the result of scene reconstruction.

IV. EXPERIMENTS

A. Collaborative SLAM Simulation

In order to verify the performance of collaborative SLAM,
we carried out two groups of collaborative SLAM simulations
respectively using two clients and three clients. For each group
of simulations, we discussed the impact of client map overlap
rate on the speed and accuracy of SLAM and compared
the performance of the single-robot SLAM Based on ORB-
SLAM2 and the collaborative SLAM.

We used the rgbd dataset freiburg2 pioneer sequence in the
TUM dataset published by Munich University of Technology
as a simulation sequence, which includes 2544 RGB images
and 2531 depth images. In the simulation, we primarily
intercepted the first 1800 RGB images and their matched depth
images.

The client map overlap rate is defined as the ratio of the
number of RGB images overlapped by two clients to the total
number of RGB images of one client in collaborative SLAM.
In the two clients simulation, the image sequences of SLAM
performed by the two clients are [1,900+1/2δ] and [900−
1/2δ,1800], where δ is the number of overlapped images, the
map overlap rate is

η =
δ

900 + 1
2δ

× 100% (1)

In the three clients simulation, the image sequences of
SLAM are [1,600 + 2/3δ], [601 − 1/3δ,1200 + 1/3δ]
and [1201− 2/3δ,1800] respectively, and the map overlap
rate is

η =
δ

600 + 2
3δ

× 100% (2)

Figure 5 shows the APE (absolute trajectory error) of global
poses relative to the ground truth. The upper is three clients
collaborative SLAM with a 15% overlap rate and the lower is
single-robot SLAM based on ORB-SLAM2. It shows that the
trajectory error of collaborative SLAM at fusion point A and
fusion point B is lower than that of single-robot SLAM.

Fig. 5. APE of global poses relative to the ground truth. The
upper is three clients collaborative SLAM with a 15%

overlap rate and the lower is single-robot SLAM based on
ORB-SLAM2.

Figure 6 (a), (b), (c) respectively shows the motion tra-
jectory of the camera in the X-Y coordinate system, the
translation motion in the X, Y and Z directions and the rotation
motion of the camera of three clients’ collaborative SLAM
under 5% overlap rate. We can see that at the fusion point,
the clients’ camera trajectories keep a smooth joint.

Table II shows the performance comparison of single-robot
SLAM based on ORB-SLAM2 and collaborative SLAM with
η = 0.5%, η = 2.5%, η = 5% and η = 10% map overlap rate
using two clients and three clients respectively. We compare
the APE and the SLAM time. As can be seen from the table,
collaborative SLAM is significantly faster than single-robot
SLAM. For collaborative SLAM with the same number of
clients, the SLAM time increases gradually with the increase
of overlap rate, the reason is that with the increase of map
overlap rate, the total length of map track increases, and
the number of fusion candidate keyframes increases during
overlap detection.

In the accuracy comparison, it is shown that the APE of
collaborative SLAM using two or three clients compared with



Fig. 6. Three clients’ collaborative SLAM under 5% overlap rate (a) the motion trajectory of the camera in the X-Y
coordinate system (b) the translation motion of the camera in the X, Y and Z directions (c) the rotation motion of the camera.

TABLE II
PERFORMANCE COMPARISON OF SINGLE-ROBOT SLAM BASED ON ORB-SLAM2 AND

COLLABORATIVE SLAM WITH η = 0.5%, η = 2.5%, η = 5% AND η = 10% MAP OVERLAP RATE USING TWO
CLIENTS AND THREE CLIENTS RESPECTIVELY

Simulation types Map overlap rate SLAM time(s) APE compared with ground truth
MAX(m) MIN(m) MEAN(m) RMSE(m) STD(m)

two clients

0.5% 182.991 0.272155 0.025486 0.107329 0.115215 0.041892
2.5% 183.954 0.287261 0.015851 0.104600 0.113892 0.045058
5% 208.346 0.419079 0.023694 0.099872 0.108340 0.046197

10% 216.230 0.430514 0.018811 0.093263 0.106102 0.050592

three clients

0.5% 192.963 0.280589 0.023632 0.111820 0.117270 0.042136
2.5% 196.819 0.282969 0.016776 0.109107 0.116530 0.043377
5% 210.618 0.302456 0.021313 0.107726 0.117106 0.044203

10% 226.272 0.359229 0.024495 0.104230 0.113112 0.044530
single-robot - 254.004 0.437231 0.027386 0.106989 0.117485 0.048540

ground truth is slightly lower than that of single-robot SLAM,
which proves that collaborative SLAM has good accuracy
compared with single-robot SLAM. For collaborative SLAM
with the same number of clients, the increase of overlap rate
leads to the increase of APE maximum error and standard
deviation, but the decrease of average error and mean square
error, which shows that the increase of map overlap rate
increases the local error of trajectory and the overall error
fluctuation, but the trajectory fits the real value better. This is
because the increase of map overlap rate enlarges the solution
space of the global BA optimization at the end of map fusion,
so as to get a better combination of optimization, but the
increase of map overlap rate is easy to cause over-optimization,
resulting in the increase of local error and the increase of
global error fluctuation.

It can be seen from the above simulations that the collab-
orative SLAM system greatly improves the speed of SLAM.
And it keeps the smooth connection of the trajectory at the
fusion point and can reduce the global trajectory error, thus
improve the accuracy of SLAM. Moreover, the performance of
collaborative SLAM is related to the overlap rate. The higher
the overlap rate is, the slower the speed of SLAM is. Although
increasing the overlap rate can reduce the root mean square
error of the trajectory and make the trajectory fit the real value
better, it will lead to over-optimization and increase the local
error and the global error fluctuation.

B. Scene Reconstruction Simulation

In the scene reconstruction simulation, we choose the rgbd
dataset freiburg1 desk sequence of the TUM dataset, which
contains 613 RGB images and 595 depth images. Figure 7
shows the camera keyframe trajectory with a 5% overlap rate

using two clients. Figure 8 shows the comparison between
the point cloud model of collaborative SLAM and scene
reconstruction with 5% map overlap rate using three clients,
and the point cloud model of scene reconstruction using
ground truth. From the qualitative analysis, the model of
collaborative SLAM is more complete with smoother edge and
more abundant details. We use the software Cloudcompare
to calculate the Hausdorff distances [13] for quantitative
comparison, which is shown as

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
(3)

Fig. 7. Camera keyframe trace with a 5% map overlap rate
using two clients.

Because Hausdorff distance is very sensitive to outlier
points, we first match the bounding-box centers and match
the scales using Cloudcompare. Then we compute the cloud-
to-cloud Hausdorff distance, which we take the point cloud



Fig. 8. Comparison between the point cloud model of collaborative SLAM and scene reconstruction with 5% map overlap
rate using three clients (a), and the point cloud model of scene reconstruction using ground truth (b).

TABLE III
CLOUD-TO-CLOUD HAUSDORFF DISTANCE WITH

THE POINT CLOUD RECONSTRUCTED BY THE
GROUND TRUTH AS A REFERENCE

Simulation types Map overlap rate Hausdorff distance(m)

two clients

0.5% 0.538863
2.5% 0.534888
5% 0.531970

10% 0.535378

three clients

0.5% 0.536692
2.5% 0.539653
5% 0.442427

10% 0.539545
single-robot - 0.552168

reconstructed by the ground truth as a reference. The result is
shown in Table III. It can be seen that the point cloud model
obtained by scene reconstruction using the poses obtained by
the collaborative SLAM is more accurate than that obtained by
scene reconstruction using the poses obtained by single-robot
SLAM based on ORB-SLAM2.

V. CONCLUSION

Aiming at the problems of slow mapping speed in single-
robot SLAM and only semi-dense mapping in ORB-SLAM2,
this study proposed a collaborative SLAM and scene recon-
struction system based on RGB-D camera. The system adopts
a centralized architecture, transplants the SLAM process to
a server with stronger computing power, while only performs
image acquisition in the clients, which makes the system more
suitable for deployment in the lightweight collaborative SLAM
system. We used the TUM dataset to simulate the collaborative
SLAM and scene reconstruction respectively and proved that
the collaborative SLAM has better speed and precision of
mapping than the single-robot SLAM. Through the research
on the overlap rate of the map, we found that the increase
of overlap rate can improve the accuracy of mapping, but it
will increase the fluctuation of the global trajectory. Finally, we
verified the performance of the scene reconstruction algorithm
through the scene reconstruction simulation and further proved
that the camera poses with high accuracy can be obtained
through collaborative SLAM. The next step is to optimize the

data transmission between the clients and the server. Com-
pression of the data transmitted by the server and the client
can reduce the network bandwidth utilization and improve
the speed of collaborative SLAM. At the same time, the
scene reconstruction algorithm needs to be further optimized to
improve the reconstruction accuracy, so that the reconstruction
model can be further used for navigation and other functions.
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